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Abstract

Team communication platforms have emerged as vital tools in our professional and personal
lives. They facilitate collaboration, streamline workflow, and serve as indispensable links that
connect us to our colleagues, classmates, and peers. However, as these platforms evolve and
gain widespread acceptance, they simultaneously expose new vulnerabilities for malicious
activities, resulting in significant data security challenges. Detecting attackers on these plat-
forms is particularly daunting, given the high level of assumed trust among users.
Graph Neural Networks (GNNs), a type of machine learning algorithm specifically designed
for graph-based data, are emerging as a promising solution to tackle evolving security chal-
lenges on graph-based data networks. Over recent years, GNNs have proven to be superior
in the field of anomaly detection on graph networks, outperforming traditional machine
learning or heuristic-based approaches.
In this thesis, we introduce ECONAD, a specialized GNN model developed to detect anoma-
lies in team communication platforms. ECONAD distinguishes itself by incorporating human
knowledge about known data breaches through innovative augmentation strategies and
processing team communication platforms through various attack vector-specific perspec-
tives. In addition, we present a novel dataset, detailing the activities of 250 users on a team
communication platform over a period of three years. This dataset serves as the foundation
for testing and evaluating the effectiveness of our anomaly detection model. Through our
experiments, we show that our model surpasses state-of-the-art GNN anomaly detection
models when applied to this unique dataset, outperforming the baseline by up to 35% in
recall and 14% in the overall f1 score. Moreover, our approach unveils graph-based anomalies
that existing threat detection methods are unable to identify.
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1 Introduction

As digital technology advances at an unprecedented pace, team communication platforms
emerged as vital tools in our professional and personal lives. They facilitate collaboration,
streamline work�ow, and serve as indispensable links that connect us to our colleagues,
classmates, and peers. As of now, over 83% of professionals worldwide depend on these
technologies for team communication [1]. Simultaneously, this market is projected to be worth
23.8 billion USD by 2030, underscoring its growing prominence in our digital society [2].
However, as these platforms evolve and gain widespread acceptance, they simultaneously
open up new vulnerabilities for malicious activities, posing signi�cant challenges to data
security [3, 4]. Many users often overlook the potential security risks embedded within
these communication platforms, falsely presuming that threats are unlikely to originate from
familiar co-workers or acquaintances. This complacency allows an attacker to exploit a single
compromised account and leverage it to deceive other users, thus gaining unauthorized access
to more sensitive information [5, 6, 7, 8].

Graph Neural Networks (GNNs) [9] are rising as a promising solution to tackle evolving
security challenges on graph-based data networks [10]. In recent years, GNNs have proven to
be superior in the �eld of anomaly detection on graph networks, outperforming traditional
machine learning or heuristic-based approaches [11, 12]. As team communication platforms
can be represented as heterogeneous graphs, we propose to apply a GNN to �nd threats and
malicious actors within a team communication platform.
However, this heterogeneity poses a challenge for existing GNNs to process, as existing
models for malicious node classi�cations are primarily designed for homogeneous graph
structures [10]. Also, incorporating team communication-speci�c human knowledge about
previous attacks into a model is not trivial. Evaluated breaches often use several different at-
tack vectors, which are team communication platform-speci�c and have not been investigated
by other GNN-based research.

In this thesis, we present ECONAD, a GNN model speci�cally designed to detect anomalies
in team communication platforms. ECONAD is based on a state-of-the-art anomaly detection
model for social networks, which is further enhanced by introducing multiple views to
handle the graph's heterogeneous structure. Additionally, novel custom data augmentation
strategies are introduced to identify multiple types of attacks that were recorded within team
communication platforms.
To evaluate ECONAD, we create a custom team communication dataset, containing the
activity of 250 users over three years. On this dataset, each enhancement of ECONAD
is extensively evaluated, with the top-performing strategies combined to create our �nal
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1 Introduction

model.

The following chapter introduces the background of this thesis, including previously occured
breaches in team communication platforms, and de�ned attack vectors in this domain. Related
models and approaches for anomaly detection on team communication platforms are further
described in Chapter 3. Chapter 4 highlights the need for a new dataset and describes the
process of creating a custom dataset for this thesis. The dataset is further processed with our
novel model in Chapter 5. Here, we outline the improvements made to the base model. In
Chapter 6, we evaluate our approach, to understand what impact the different enhancements
had on the model and how they compare to the baseline. Our �ndings are discussed in
Chapter 7. In Chapter 8, we conclude our work and outline future work.
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2 Background

More and more companies and organizations are using team collaboration platforms as
their primary tool for internal communication and organization [13][14]. A centralized team
communication platform offers much more comfort and ease to use for communication than
traditional email communication.
However, while years of phishing attacks have created users suspicious of unusual emails,
few suspect a message from a coworker within their own organization's platform. Therefore,
compromising a single account within a platform can be easily leveraged by an attacker to
deceive other users and gain additional access.
Many organizations maintain multiple channels to encourage participation and facilitate
knowledge sharing. Unfortunately, the question of who has access to these channels is
frequently overlooked, leading to the unintentional sharing of con�dential information,
including sensitive messages such as passwords or API keys. Additionally, few individuals
consider the long-term storage of their messages and the potential access by compromised
accounts. Once the information is within the platform, it can be inde�nitely accessible,
creating future security risks [3].
Not only does lateral phishing pose a threat within team communication platforms, but
the extensive con�guration options for workspaces also present risks. For example, users
can install third-party integrations, which can potentially act maliciously and have been
exploited in the past to extract sensitive data from the platform [15, 16]. Furthermore, all
users can modify their pro�le settings without any countermeasures in place to prevent
potential impersonation attacks [4].

2.1 Recent Attacks on Team Collaboration Platforms

No exact number exists regarding the frequency of breaches on team communication plat-
forms. Usually, only the most impactful breaches are published and recorded by the media or
post-mortems.

At the beginning of 2023, two prominent companies, the ride-booking company Uber [17]
and the video game developer Activision Blizzard [18], faced breaches on their internal
communication platform, Slack [19] [5, 6]. These breaches occurred within a short span of �ve
months, and it is believed that the same attacker was responsible for both incidents. In both
cases, the attacker used spear-phishing SMS attacks to bypass Slack's 2FA authorization. Once
an employee fell victim to the attack, the attacker gained control over their Slack account and
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2 Background

proceeded to exploit all publicly available channels. The attacker's actions resulted in the
unauthorized access of sensitive information about unreleased games for Activision Blizzard
and the discovery of passwords for other services in the case of Uber. Furthermore, the
attacker managed to breach the administration panels of several internal services associated
with Uber. As a consequence, Uber experienced a 5.2% drop in share prices, resulting in an
estimated loss of 4.53 billion USD [20].
Similarly, in 2021 and 2022, two video game developers, Electronic Arts [21] and Rockstar [22],
also encountered breaches on their internal communication tool[7, 8]. In both instances, the
attacker purchased stolen session cookies from the dark web and utilized them to log into the
victims' Slack accounts. Subsequently, the attacker internally contacted IT support to request
new authentication tokens. In the case of Electronic Arts, they pretended to have lost their
phone.

2.2 Attack Vectors

The reports of breaches described in the previous Section 2.1 differ as follows: In the �rst two
scenarios, involving Uber and Activision Blizzard, the attacker downloaded and processed
messages to �nd sensitive information. In the second two scenarios, the attackers conducted
active spear phishing attacks within the team collaboration platform, extending their attack
on other services outside the team communication platform.

During the investigation of these recent attacks, we identi�ed the following attack vectors (AV)
that the attackers used to leverage their attack after the initial access to the team collaboration
platform:

AV1 Lateral Neighborhood Phising : The attacker attempts to gain access to sensitive
information by sending phishing messages to known members of the victim's immediate
communication circle, which could include the victim's team or individuals with whom
they had previous message interactions.

AV2 Lateral Phishing to "Powerusers" : "Powerusers" are de�ned users within a platform
that manage a security-relevant resource. An example of this is an IT administration
that holds credentials for speci�c services. By targeting power users with elevated
administrative privileges, the attacker can attempt to build up persistence in the platform
(e.g. requesting new credentials) or leverage the attack to new services. Typically,
these attacks require the attacker to contact users with whom the victim had no prior
interaction.

AV3 Impersonation : The attacker impersonates a user of the team communication plat-
form by copying the victim's avatar and pro�le information. They attempt to gain
access to sensitive information by pretending to be a well-known co-worker within the
organization.

AV4 Channel Snif�ng : The attacker attempts to uncover sensitive information by in�ltrat-
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2 Background

ing multiple public channels. This information may include plain-text passwords or
con�dential documents that have been previously shared, as message history remains
preserved within team communication platforms and does not disappear over time.

In this thesis, our objective is to identify the four attack vectors within a team communication
platform before the attacker can exploit them and in�ict further damage.

5



3 Related Work

The following sections review and compare existing threat detection systems and methods for
social networks. With this, state-of-the-art anomaly detection algorithms for graph networks
are presented.Various system designs are compared, including the underlying algorithm on
which our own model is based.
Next, this chapter introduces currently accessible datasets from team communication plat-
forms that are freely available for research. Each dataset is evaluated based on its relevance
to the research problem and data quality.
Finally, we examine existing commercial solutions for anomaly detection in team collab-
oration platforms and evaluate their capabilities to detect the attack vectors described in
Section 2.2.

3.1 Anomaly Detection on Social Networks

Current strategies for anomaly detection on (social) networks can be categorized into two
leading methods: Non-Deep Learning (Non-DL) methods and Deep Learning (DL) methods.
Non-DL methods typically rely on various types of heuristic anomaly measurements to detect
anomalies, while DL methods often resort to feature learning or Graph Neural Networks
(GNNs) for the detection of anomalies. In recent years, DL-based approaches have shown
superior performance over traditional Non-DL methods [12, 11]. The following subsections
provide a brief overview of each category.

3.1.1 Heuristic Based Anomaly Detection

Heuristic-based anomaly detection signi�cantly affected graph analysis, paving the way for
novel techniques to identify and interpret anomalous nodes or edges. Innovative methods
such as the measure of "normality" [23], the user-oriented FocusCO algorithm [24] (used
for user preference attribute extraction), outlier classi�cation models [25], or methods for
selecting congruent subspaces in multivariate attributed graphs [26] all emerged from this �eld.
Taking into account both the structural and attribute-based characteristics of graphs, these
heuristic-based approaches demonstrated notable advancements over traditional techniques
that prioritize structural features exclusively.

However, the rise of deep learning-based techniques introduced a signi�cant shift in anomaly
detection, rede�ning the methods and mechanisms used to identify anomalies. The ability
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of deep learning-based approaches to discern complex patterns and dependencies within
data outperformed the performance of heuristic-based methods. For example, Li et al. [12]
introduced a learning framework that leveraged residual analysis for anomaly detection
in attributed networks. This approach successfully identi�ed anomalies that signi�cantly
deviated from expected behavior, outperforming traditional heuristic-based methods. Fur-
thermore, Müller et al. [11] introduced the Graph Outlier Ranking (GOutRank) method that
offered a uni�ed approach to anomaly detection in graph and attribute data spaces. The
authors demonstrated that deep learning-based techniques outperformed heuristic-based
methods.

3.1.2 Non-Graph DL Based Anomaly Detection on Social Networks

Before shifting the focus to graph anomaly detection, we took a broader look at the topic
and investigated how other researchers detected anomalies in the domain of social networks
using non-graph-based approaches.

Several studies chose to focus their entire attention on the attributes of social network users.
For example, Kawase et al. [27] delved into the issue of account takeover, a form of online
identity theft prevalent in online vehicle marketplaces. The authors presented a dual-faceted
approach to prevent and detect unauthorized account activities. To prevent account takeovers,
they performed a behavioral analysis of fraudsters' operations and implemented a mutual
two-factor authentication method, resulting in a signi�cant reduction of 43% in account
takeovers. For detecting fraudulent activities, a concept drift-sensitive machine learning
training approach was introduced, which improved detection rates by 18% over baseline
methods. Consequently, the automated detection resulted in a safer marketplace by reducing
the exposure of fraudulent listings by 69%.

In another study, Ho et al. [28] focused entirely on lateral email phishing attacks. They
conducted a large-scale characterization of these attacks using a dataset of 113 million
employee-sent emails from 92 enterprise organizations. To detect phishing emails, they
developed a classi�er that could identify hundreds of real-world lateral phishing emails. This
study offered valuable insights into the nature and scale of enterprise phishing attacks.

The research conducted by Shen et al. [29] and He et al. [30] focused on analyzing user
features within dating apps to detect fake accounts. Shen et al. [29] developed a trust-aware
detection framework to detect malicious users in dating social networks. They proposed
a user trust model and a novel data-balancing method within their framework to enhance
the recall rate of malicious user detection. This approach signi�cantly outperformed other
baseline algorithms.
He et al. [30], on the other hand, developed a novel system named DatingSec to counteract
the hidden signals in the textual information of user interactions. This system combined
Long Short-Term Memory neural networks (LSTMs) and an attentive module to capture users'
temporal-spatial behaviors and user-generated textual content. When evaluated on a real-
world dataset from Momo [31], a widely used dating app, DatingSec claimed it outperformed
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state-of-the-art methods.

Much like He et al.[30], who employed LSTMs to predict anomalous users within dating
networks, numerous other studies relied solely on Natural Language Processing (NLP)
approaches to process user messages for anomaly detection. For example, Seyler et al. [32]
developed a novel general framework for the semantic analysis of text messages to detect
compromised accounts on social networks. Their approach, based on the difference in
language usage between normal users and adversaries, proposed new semantic features
for measuring semantic incoherence in a message stream. When tested using a Twitter
dataset [33], their approach proved effective in detecting compromised accounts, with the
KL-divergence-based language model feature performing the best.
Similarly, Ilias et al. [34] addressed the issue of detecting automated accounts or bots on
Twitter [35], which spread harmful content. They proposed two methods, based primarily
on NLP, for the early detection of these bots. The �rst method utilized feature extraction
and machine learning algorithms to identify accounts that post automated messages. The
second method introduced a deep learning architecture, unique in its use of an attention
mechanism for bot identi�cation. Both methods, when evaluated using real Twitter datasets,
demonstrated advantages over existing techniques to identify malicious users on social
networks.

Although these papers produced good results for their speci�c use cases, they did not
incorporate any graph topology for their classi�cation.

3.1.3 Graph Based DL Anomaly Detection on Social Networks

The rapid advancements and wide adoption of graph neural networks (GNNs) in recent years
generated considerable attention and traction in the �eld of anomaly detection on attributed
graph networks [36]. In this regard, the papers of Ma et al. [10] and Kim et al. [37] presented
an overview of the current status quo in the �eld of GNN anomaly detection and reviewed
recent advances in detecting graph anomalies using GNN models. Both studies highlighted
the signi�cant role of deep learning in handling high-dimensional network data, proposed
new taxonomies for different state-of-the-art methods, and outlined potential future research
directions.

General purpose anomaly detection models such as ANOMALOUS [38] and DOMINANT [39]
paved the way for more specialized models. ANOMALOUS [38] addressed the issues of
noisy and irrelevant node attributes in anomaly detection by proposing a new framework
that jointly conducted attribute selection and anomaly detection based on CUR [40] matrix
decomposition and residual analysis. On the other hand, DOMINANT [39] tackled the
problem of anomaly detection on attributed networks by proposing a novel deep learning
model that integrated topological graph structure and node attributes for node embedding
learning, using graph convolutional networks [41] and deep autoencoders [42].

These advances led to the development of specialized models for social networks [43, 44, 45].

8



3 Related Work

Chaudhary et al. [43] proposed a Graph Neural Network for anomaly detection in email
and Twitter networks by studying the graph structure and understanding the functioning of
anomalous nodes through the use of deep neural networks. Similarly, Dou et al. [44] proposed
a novel framework, which exploited user preference for fake news detection by jointly model-
ing content and graph, addressing the issue of disinformation and fake news. Xu et al. [45]
addressed the problem of modeling and integrating human knowledge of different types of
anomalies for attributed network anomaly detection. Their approach modeled prior human
knowledge through novel data augmentation strategies and integrated them in a Siamese
graph neural network encoder through a well-designed contrastive loss. Their proposed
model Contrastive Anomaly Detection(CONAD) is further evaluated in Section 3.3.

The technique of using different graph transformations based on node features and relations
to improve the performance of anomaly detection models on (heterogeneous) graphs was
extensively discussed in several papers [10, 46, 47]. Zhang et al. [46] used this technique to
identify malicious users in underground forums, introducing an intelligent system, iDetective,
that employed a meta-path-based approach for user representation and a method named
Player2Vec for key player identi�cation [46]. Meanwhile, Peng et al. [47] proposed ALARM, an
extendible framework that combined multiple GNN models for feature-speci�c predictions.
ALARM took into account user preferences and heterogeneous attribute characteristics
through multiple graph encoders and a well-designed aggregator supporting self-learning
and user-guided learning.

The papers discussed in this section demonstrated the potential of graph-based methods for
anomaly detection on social networks, not only in understanding complex patterns but also in
capturing subtle, nuanced deviations that might otherwise go unnoticed. In the next section,
we take a closer look at three different system designs used by the previously introduced
GNN anomaly detection models for social networks [44, 39, 47].

3.2 System Designs

This section investigates common techniques and approaches of the previously mentioned
papers used to detect anomalies in social media datasets [44, 39, 47]. We identi�ed the
following three system designs and took a closer look at them.

• The �rst approach, as described in the paper "User Preference-aware Fake News Detec-
tion" by Dou et al. [44], was employed to detect fake news within a Twitter [35] network.
For each message transmitted, a unique graph was constructed based on its propagation
throughout the Twitter community. Utilizing a dual-encoder design structure, the �nal
classi�cation of each graph depended on both the message's interaction graph structure
and its embeddings. The complete system design is illustrated in Figure 3.1. Although
this approach appeared reasonable for a vast open social network such as Twitter, which
includes millions of users, it may be less applicable to a team communication platform
characterized by a more limited user base.

9
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Figure 3.1: Event-focused graph and model design, as demonstrated by Dou et al. [44]. For
each written message, a user-interaction graph and text embeddings were created
and processed separately.

• The next investigated design approach was based on processing a single attributed full
graph that represented an entire social network and its interactions. Unlike the previ-
ously mentioned system design, where the graph was divided into multiple subgraphs
based on events such as sent messages, this approach processed the entire graph at once.
This allowed for greater �exibility in sampling and detecting various types of anomaly
events. According to the number of research papers focusing on anomaly detection
tasks, this graph processing approach was the most popular [10].
To process graph structures derived from social networks, the paper "Deep Anomaly
Detection on Attributed Networks" [39] introduced an autoencoder [42] approach for
anomaly detection based on reconstruction error (see Figure 3.2). This approach was fur-
ther re�ned for the application on social networks in the paper "Contrastive Attributed
Network Anomaly Detection with Data Augmentation" [45], which is evaluated in more
detail in Section 3.3.

Figure 3.2: DOMINANT [39] employed an autoencoder design in which the entire graph is
processed at once. The classi�cation was based on the reconstruction error of a
siamese decoder, which was speci�cally trained to reconstruct the original graph.

10
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• The �nal investigated system design assumes that distinct graph views can represent
various graph features. Each graph view is subsequently processed individually by a
GNN. The �nal classi�cation is determined by combining the outputs of all GNNs. An
exemplary architecture, introduced in the paper titled "A deep multi-view framework
for anomaly detection on attributed networks" by Peng et al. [47], is illustrated in
Figure 3.3.

Figure 3.3: Design of a multi view graph system, as described in the work by Peng et al. [47].
This approach involved splitting the graph into distinct views according to its
features. Each graph view was subsequently processed by an independent Graph
Neural Network (GNN). The �nal classi�cation was determined by combining the
individual GNN classi�cations.

Compared to graphs derived from traditional social networks, such as Twitter [35] or Face-
book [48], team communication platforms are more limited in memory size and graph
complexity. There is no need to create a new subgraph for single events, instead, we can
process the full graph at once. Therefore, this thesis focuses on the second system design.
This approach offers the most �exibility for sampling and detecting different kinds of anomaly
events and we believe that it is the most suitable for detecting the observed attack vectors
described in Section 2.2

.

3.3 Contrastive Anomaly Detection (CONAD)

As mentioned in Sections 3.1.3 and 3.2, multiple GNN-based models were �ne-tuned for
anomaly detection on social networks. CONAD, the model introduced in the paper Contrastive
Attributed Network Anomaly[45], was chosen for further evaluation, as it leveraged human
knowledge into its model design to detect different anomaly types. Initially based on
DOMINANT [39], this model could process a single social network graph at once. This
approach seemed reasonable for our use case, as we can leverage the knowledge of the
observed attack vectors described in Section 2.2.
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Figure 3.4: CONAD [45] system design. In contrast to other GNN-based anomaly detection
approaches for social networks, CONAD incorporates human knowledge about
anomalies into its model design.

3.3.1 Design

The CONAD model design, as shown in Figure 3.4, consists of three main components.
The �rst Knowledge Modeling Modulecomponent introduces augmentation strategies for each
de�ned anomaly type x to the input attributed graph G and generates the augmented
attributed graph Gano accordingly.
Then, the Knowledge Integration Moduleis used to feed G and Gano into the graph encoder,
a Siamese GNN, to learn the graph node representations. Using a Siamese encoder, both
graphs are encoded into the same latent space, making it possible to contrast between
the node representations of G and Gano. After the encoding, a unique contrastive loss is
used to guide the encoder to represent normal nodes on the input-attributed network and
contrastive samples on the augmented attributed network differently. Consequently, this
captures anomaly patterns of the augmented nodes.
Finally, the Anomaly Detection Moduleis used to reconstruct the graph structure and node
attributes from the learned node representations. The reconstruction errors are then leveraged
as suspicion scores, quantifying how likely a node is to be abnormal, to detect anomalies in
G.

3.3.2 Knowledge Modeling Module

By default, CONAD has four prede�ned augmented anomaly types, from both the structural
site and the attribute side.

• high-degree (structural) augmentation for detecting nodes with a high degree centrality.

• outlying (structural) augmentation for detecting outlying nodes.

12
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Figure 3.5: Four different kinds of anomalies are modeled through a data augmentation
strategy. These augmentations can be based on the graph structure or node
attributes.

• deviated (attribute) augmentation for detecting nodes with deviated attributes from
their neighbors.

• disproportionate (attribute) for detecting nodes with disproportionate attributes, e.g.,
unreasonable low or high attribute values.

After applying the augmentation methods, the augmented attributed graph Gano is obtained.
Within Gano, a label vector y denotes if a node corresponds to one of the introduced anomaly
augmentation types.
In Chapter 5, we will introduce our own novel augmentation strategies speci�cally designed
for team communication platforms.

3.3.3 Knowledge Integration Module

The modeled human knowledge within the augmentation types is now integrated into the
detecting model through learning node representations and contrasting between different
views.

Learning Node Representations . In order to encode both G and Gano, CONAD employs a
Siamese GNN architecture as an encoder.
Here, the aggregation mechanism hi

( l+ 1) = AGG(f hi
( l )g [ f h( l )

j : j 2 Nig) is used to learn

the node representations, where hi
( l ) denotes the representation of node i in the l-th layer,

and hi
(0) is the input attribute of node i. Ni is the set of all neighbors of node i, AGG(�)

is the aggregation function that can be implemented by mean pooling, max pooling, or
many others [49]. On default, CONAD speci�es the information aggregation based on the
self-attention mechanism in Graph Attention Networks (GAT) [50].
Multiple GAT layers are stacked to form the encoder Enc for node representation learning.

Contrasting Between Views . To fully harness the power of human knowledge in Gano,
CONAD contrasts between the Gano and the normal view G. The anomalous patterns on the
attributed network are expected to be well characterized through this contrastive process.
Two different contrast strategies are used to contrast between the two views, Siamese contrast
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and Triplet contrast.
Siamese contrast: SupposeEncencoded Gand Gano through stacked GAT layers into the repre-
sentations Z and Ẑ, then siamese contrast is performed between zi and ẑi , the representations
of node i in G and Gano, respectively. The contrastive loss is de�ned as:

L sc =
1
n

n

å
i= 1

�
Iyi = 0 � d(zi , ẑi ) + Iyi = 1 � maxf 0,m � d(zi , ẑi )g

�

where I is the indicator function, yi is the label of node i, d(�) is the Euclidean distance,
and m is the margin. When applying Siamese contrastive loss (yi = 1), node i is considered
abnormal in Gano, the distance between the nodes representation in G and Gano, d(zi , ẑi ),
will be maximized with margin no smaller than m. When yi = 0, the node i is considered
normal in Gano, the distance between the nodes representation in G and Gano, d(zi , ẑi ), will be
minimized.
Triplet contrast : To further enhance the contrastive learning, CONAD also employs triplet
contrast that works on the triplet of nodes f zi , zj , ẑjg, where zi zj are normal nodes in G, ẑj is
an abnormal node in Gano. The triplet contrastive loss is de�ned as:

L tc = å
8A i j = 1,

yi = 0,yj = 1

max
�

0,m �
�
d(zi , ẑj ) � d(zi , zj )

�	

By minimizing the contrastive triplet loss, the model will increase the gap between two
distances with a margin no smaller than m.

3.3.4 Anomaly Detection Module

Besides learning from human knowledge through augmentation strategies in Gano, CONAD
also learns from the original attributed network G to detect anomalies in it. The aim is to
reconstruct the graph structure and node attributes from the learned node representation view
Z. Since anomalies cannot be well reconstructed, the reconstruction errors are leveraged as
suspicion scores to detect anomalies inG. The model uses a decoder function Dec, that consists
of a GAT layer to reconstruct the adjacency and attribute matrix from Z. The reconstruction
error is then de�ned as:

Â = s(Z � Z> ), X̂ = GATLayer (A, Z)

L recon = l

 A � Â




F + ( 1 � l ) �

 X � X̂




F

Here, s(�) is a nonlinear activation function, e.g ReLU [51], (�)> and k�kF are the transpose
and Frobenius norm (L2 norm for a matrix), respectively. As often, l is a hyperparameter
to balance the reconstruction loss between the adjacency and attribute matrix. In Chapter 6,
we experiment with different values for l to determine which reconstruction error is more
important for our introduced augmentation strategies.
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3.4 Datasets

In this section, we take a closer look at potential datasets that can be used to evaluate our
model. We distinguish between two kinds of datasets: First, datasets containing messages
from team collaboration platforms. Second, datasets that contain messages from other
platforms, such as social networks, that were used to train and evaluate models for anomaly
detection.

3.4.1 Team Communication Datasets

Recent research on team communication platforms focused on message disentanglement. For
this task, Chatterjee et al. [52] monitored various programming-related Slack workspaces
over a period of two years. The dataset contained 38,955conversations from 12,171unique
users and was split into four workspaces: clojurians (7918 conversations), elmlang (22172
conversations) and pythondev (8887 conversations). After the initial publication, it was also
extended with messages from more programming-related workspaces, such as racket (about
1900 conversations).

In addition to the monitored Slack workspaces by Chatterjee et al., the paper GitterCom[53]
and the website FreeCodeCamp.org [54] published datasets of up to 10,000 messages col-
lected from several Gitter [55] communities. As in the previous dataset, all workspaces
were associated with software engineers working on open-source software or speci�c pro-
gramming languages. The workspaces were publicly available without any restrictions for
communication or joining a community.

3.4.2 Non-Team Communication Datasets

Most GNN anomaly detection algorithms for message communication are not trained on
team communication datasets. Instead, they used data from social networks. Here, the most
common datasets originated from Twitter [35], Reddit [56], and Facebook [48] [57, 58, 59].
However, none of these datasets included internal communication from a larger company or
organization.
The �rst Twitter and Facebook datasets [57] were initially introduced to discover social circles
in ego networks. Here, the authors developed a model that combined network structure and
user pro�le information to predict these circles.
In the second Twitter dataset, called FakeNewsNet[58], the authors presented a fake news
data repository, which contained two comprehensive datasets with various features in news
content, social context, and spatiotemporal information.
The Reddit dataset [59] was introduced to train a model for node classi�cation. Here, the
authors classi�ed the category of unseen nodes in evolving information graphs based on
citations and Reddit post data.

All the mentioned social network datasets included message data from public conversations.
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The most popular dataset that only contained private messages was Enron [60], published in
2004. This dataset contained 0.5M emails of 150 employees of the Enron Cooperation [61], a
former US-based energy company. In recent years, this dataset was often used for the task of
email classi�cation [62].

The presented datasets from team collaboration platforms and datasets that contained mes-
sages from other social networks, are not very similar regarding graph topology and message
content in contrast to a private organization's team communication platform. In Chapter 4,
we will conduct a more comprehensive evaluation of these identi�ed differences.

3.5 Commercial Solutions

During our research, we found the following commercial solutions that promised different
levels of threat detection for team collaboration platforms:

• Avanan [63] was a cloud security platform that offered a solution for popular team
communication platforms. It promised to detect account takeovers and insider threats
by using audit logs. Furthermore, it claimed to detect malicious �les and sensitive
information.

• Zerofox[64] was another cloud security platform that offered an integration for team
communication platforms. Compared to Avanan, its focus centered more on message
data, detecting abusive language, malicious links, and credential theft.

• Nightfall[65] was a cloud-native data loss prevention platform. It was entirely focused
on data leakage prevention [66].

Among the most popular team communication platforms, only Slack offerd an endpoint for
monitoring suspicious user activity when a customer purchased the most expensive enterprise
plan [67]. This feature, known as the Audit Logs API, could detect ten different types of
anomalous events:

First, it could keep track of Autonomous System Numbers (ASNs) to spot badones and send
alters. Then, it also monitored �le activity, generating alerts for abnormal downloads or
�le-sharing behaviors that may imply data misuse. IP address history of user tokens could
be observed, raising an alert when a potentially suspicious IP, such as a cloud ASN, was
identi�ed. Alerts could also be triggered on an unusual volume of search queries, hinting
at suspicious behavior. Furthermore, inconsistencies in session cookies or client �ngerprints
also raised alarms. The use of TOR exit nodes, often associated with anonymous and possibly
malicious activities, could trigger alerts. Unexpected anomalous activities from administrative
accounts, able to cause severe damage, were also detected. Finally, changes in the user token's
user agent, such as a version downgrade, were noted as potential anomalies and could be
investigated through audit logs.

To our best knowledge, all the commercial solutions mentioned solely relied on attributes and
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did not incorporate the graph topology of the team communication platform. Consequently,
existing solutions could not detect graph structure-based anomalies, like AV4 Channel Snif�ng.
However, since all the mentioned solutions were closed source, it is impossible to verify this
assumption.
We believe a more holistic approach, incorporating the platform's network structure, can
detect further attacks and anomalies.

17



4 Dataset

This chapter begins with an evaluation of a freely available Slack [19] dataset. Subsequently, a
novel dataset derived from the team communication platform used within the "Entrepreneurial
Masterclass" [68] organization at the Technical University of Munich (TUM) is introduced.
In contrast to existing datasets, the Masterclass dataset offers a unique opportunity for
researching unprocessed message data and can be extensively examined for suspicious and
anomalous activities.

The raw data from the "Entrepreneurial Masterclass" communication platform must undergo a
series of transformations to be used for anomaly-detecting graph neural networks. Therefore,
the following sections describe the necessary steps and techniques to convert the raw data into
a suitable format. In addition, it is outlined how the attack vectors described in Chapter 2 are
synthesized within the dataset. During the transformation process of the raw communication
data, key features have to be extracted and converted into a standardized graph representation.
The advantages of the chosen graph representation are elaborated upon in the �nal section of
this chapter.

4.1 Choosing the Best Dataset

In the following, we compare the in Chapter 3 introduced dataset Software related Slack Chats
with Disentangled Conversations[52] with a novel dataset, derived from the "Entrepreneurial
Masterclass" team communication platform. We investigate both datasets for their features
and suitability for our research objectives.

4.1.1 Existing Datasets

As investigated in Chapter 3, only a limited number of team communication platforms were
monitored and recorded for research purposes. Chatterjee et al. [52] published the dataset
Software related Slack Chats with Disentangled Conversations, in which various programming-
related Slack workspaces were monitored for a period of two years. The dataset comprises
38955 conversations from 12171 unique users. It is divided into four workspaces: clojurians
(7918 conversations), elmlang (22172 conversations), pythondev (8887 conversations), and
racket (about 1900 conversations). The dataset includes highly active message conversations,
with some days recording thousands of sent messages (see Figure 4.1). However, it is
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Figure 4.1: Message activity in of the Slack workspaces recorded by the paper Software-related
Slack Chats with Disentangled Conversations[52]. Especially during weekends,
indicated with blue background, less activity can be seen.

important to note that the dataset solely consists of messages from speci�cally selected public
channels, excluding all communication outside these channels.

We further evaluate the suitability of this dataset for our research objectives by examining
the communication patterns within the elmlang workspace. For this, we utiliz Gephi [69], a
graph visualization tool, along with its implemented Fruchtermann-Reingold algorithm [70].
In order to apply the Fruchtermann-Reingold algorithm, we group the dataset messages into
30-minute intervals. Within each interval and for every message sent, we establish a weighted
edge connecting the sender to all other active users during that same interval. Here, the
weighted edge denotes an interaction between two users, with the weight increasing as the
number of exchanged messages between them grows. By employing this technique across
all intervals, we construct a graph that represents the communication patterns among all
users in the workspace. Through the use of the Fruchtermann-Reingold algorithm, the graph
undergoes a transformation: users with a greater number of weighted edges are drawn closer
to the center of the graph, while users with only a few interactions can be found along the
outer edge.
As can be seen in Figure 4.2, the computed interaction graph of the elmlang workspace
contains many single edges toward its outer edge. This suggests that many users were active
in the workspace for only a limited period of time, engaging in only a few message exchanges
before leaving. Such behavior is more characteristic of workspaces accessible to the general
public, rather than re�ective of communication patterns within closed organizational team
communication platforms.
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Figure 4.2: Communication cluster of the elmlang Slack workspace, recorded in the paper
Software-related Slack Chats with Disentangled Conversations[52]. Many single edges
toward the outer edge of the graph can be seen, indicating that a lot of users were
only active for a limited number of time. This behavior does not represent the
communication patterns of a closed organization's team communication platform.
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4.1.2 Masterclass Dataset

The TUM Entrepreneurial Masterclass [68] is a program managed by the Technical Uni-
versity of Munich's UnternehmerTUM initiative [71]. It offers students passionate about
entrepreneurial �elds the opportunity to write their master's thesis about entrepreneurship-
related research. The participants gain extensive integration into the entrepreneurial ecosys-
tem at TUM and UnternehmerTUM. To effectively structure this program, an internal team
communication platform (Slack) is used for organization and coordination within the master-
class.

Members of the Masterclass are divided into different task forces. Each task force is responsi-
ble for a unique area, such as marketing, technology, PR, or event organization. Additionally,
task forces manage resources relevant to their function. For instance, the PR task force controls
the Masterclass social media accounts, while the technology task force oversees the website
and server organization.

Certain resources, such as social media account login credentials or WordPress website
credentials, hold a higher security relevance. Therefore, Masterclass members are strongly
advised to handle such sensitive information carefully and exercise discretion.

With the authorization of the Masterclass, this research monitored the organization's internal
communication for three years, gathering data to construct a dataset that can be utilized for
training machine learning models to identify potential internal threats or anomalies. Although
no active threats were identi�ed during the monitored period, sensitive information, that
members were unaware of, was detected in the communication history. Overall, the dataset
offers valuable insights into the communication dynamics of a thriving organization.

4.1.3 Datasets in Numbers

The unprocessed Masterclass dataset contains the activities of 234 users, each of whom is
characterized by speci�c features such as their timezone, team af�liation, or app usage. As we
were able to gain access to data provided by a Slack Pro [72] plan, the scope of user-speci�c
features was expanded with more activity logs, including the total messageseach user has
posted, as well as access logs detailing thedevice used, IP address, and time of access.
The total count of conversations posted in public channels adds up to 3975, collected from
across a total of 39 different channels. The user with the highest activity level sent a total of
7620messages throughout the recorded period, while the most active user within the last 30
days of recording contributed a total of 313messages. On average,78 messages were sent per
week. The daily distribution of messages demonstrates a predominant pattern of messages
sent on weekdays, as shown in Figure 4.3.

In Table 4.1, we compare the dataset "Software related Slack Chats with Disentangled Con-
versations" by Chatterjee et al. [52] examined in the previous Section 4.1.1 to the Masterclass
dataset. While Chatterjee et al. monitored more conversations across 4 different workspaces,
they only published a few selected channels. Additionally, no speci�c User features are avail-
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Figure 4.3: Total number of sent messages per day within the Masterclass dataset during
November 2021. Most activity occurred on weekdays, with a peak on Wednesday.
During weekends, indicated with blue background, less activity was observed.

able, whereas we can utilize 17 different features for each user from the Masterclass dataset.
It is impossible to create a fully connected graph from Chatterjee et al., representing the entire
workspace, as we cannot access non-published channels. Therefore, it is not possible to detect
anomalies that occur across multiple channels. This is not a problem for the Masterclass
dataset, as we can access all public channels and user data.

The limited availability of user-speci�c features, the absence of recorded non-published
channels, and the observed user behavior of never returning users makes Chatterjee et al.'s
dataset unsuitable for representing a closed organization's team communication platform.
Our objective to detect the attack vectors described in Section 2.2 involves altering user
features and manipulating multiple channels. Consequently, we decide to solely use the
Masterclass dataset, as it resembles a closed organization's team communication platform,
provides more detailed resources, and includes user features and information about all public
channels.
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Feature Masterclass [68] Chatterjee et al. [52]
Number of Workspaces 1 4

Number of Users 234
elmlang: 6454
clojurians: 2422
pythondev: 3295
racket: Unknown

Number of Teams 4 Unknown
Plan Slack Pro [72] Unknown

Number of Different Channels 39
elmlang: 2
clojurians: 1
pythondev: 1
racket: 1

Total Public Channel Conversations 3975
elmlang: 22172
clojurians: 7918
pythondev: 8887
racket: about 1900

Most Sent Messages by a User 7620 18498
Average Conversations per Week 78 374
Total Conversations 3975 38955

Accessible User Features

name
timezone
team
title
status text
email
is_admin
is_bot
is_app_user
updated
email_con�rmed
deleted
country
joined channels
location
IP address

None

Accessible Message Features
timestamp
text
is_reply
replying users

timestamp
text

Table 4.1:Comparison between the Masterclass dataset and the "Software-related Slack Chats
with Disentangled Conversations" dataset, published by Chatterjee et al. [52]. While
Chatterjee et al. published more conversations and included different workspaces,
they only monitored a handful of selected channels. Additionally, no user-speci�c
features are provided, which can be leveraged for anomaly detection.
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4.2 Data Collection

The following step-by-step guide is taken from the of�cial Slack documentation [73] and is
used to export the raw data from the Masterclass Slack workspace:

Workspace Owners and Admins can export data from a workspace using the steps below:

1. From your desktop, click your workspace name in the top left.
2. Select Settings & administration from the menu, then click Workspace settings.
3. Click Import/Export Data in the top right.
4. Select the Export tab.
5. Below Export date range, open the drop-down menu to select an option.
6. Click Start Export. We'll send you an email once your export file is ready.
7. Open the email and click Visit your workspace's export page.
8. Click Ready for download to access the zip file.

The received zip �le contains the raw workspace's message history in JSON format and �le
links from all public channels. Depending on the paid subscription to Slack, the data quality
varies. For this thesis, all data from the Masterclass Slack channel is accessed with theSlack
Pro [72] subscription. Additional data, such as user-speci�c activity logs, are accessed using
the Slack API [74] and are manually added to the unzipped Slack data directory. For this task,
an API crawler was written that can be found within this thesis' code implementation.

4.3 Data Pre-Processing

As mentioned in the previous section (Section 4.2), the message history of the received
workspace is stored in JSON format. These �les are organized by channel and placed in their
respective directories. Within each channel directory, the message history is further divided
into multiple �les, each containing messages from a speci�c day. Each recorded message is
assigned a unique ID, a timestamp, a sender, and a text �eld. Figure 9.1 illustrates an example
of a message log. It's worth noting that responses, threads, and reactions are also stored
within the message object, but they are not analyzed in detail in this thesis.
In addition to the message-related log entries, the exported �les from Slack also include
user-speci�c data, which can be found in the "users.json" �le. This �le provides information
such as the users'names, emails, unique user IDs, teams, devices, and privileges. The user ID is
used throughout the workspace to identify individuals within the message history. A �nal
list of channels is stored in the �le channels.json. This �le contains the name, id, and the user
ids of all membersfor each channel in the exported workspace.

For further research, it is necessary to normalize and preprocess the message history. This
involves removing HTML links, emojis, and user-speci�c attributes. Since the workspace
contains non-English messages, a few of them must be translated into English. To accomplish
this, we leverage OpenAI's Complete API [75].
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Compared to other translation services, we encounter no rate limits in API calls. Additionally,
we implement a cache to avoid unnecessary API calls and reduce costs.

The preprocessed messages are stored in a pandas [76] dataframe. Table 4.2 displays the �nal
message dataframe and its columns.
A similar dataframe is created for users in the workspace. The dataframe is created from the
raw JSON but also incorporates new features computed from the sent messages. The �nal
user dataframe columns can be seen in Table 4.3.
Lastly, a third dataframe was created to keep track of all channels within a workspace. The
columns of the dataframe are shown in Table 4.4.

Message Feature Description
id The id of the message
ts The timestamp of the message
sender The user id of the message sender
receivers The user id of the message receivers
message The original message text
replying_to An optional id of the message the current message is replying to
preprocessed The pre-processed message text
embedding An embedding representation of the preprocessed message text
label Label indicating if the message is malicious or not

Table 4.2:Columns of the Message Dataframe. Bold indicated features are computed and
cannot be found in the original JSON �les.
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User Feature Description
user_id The user id
name The user name
tz The user's timezone
team The user's assigned team
title The user's role in the organization
status_text The user's status (e.g. "In a meeting", "On vacation")
email The user email
is_admin Whether the user is an admin
is_bot Whether the user is a bot
is_app_user Whether the user has the Slack app installed
updated The timestamp of the last update
is_email_con�rmed Whether the user's email is con�rmed
deleted Whether the user is deleted
country The user's country
channels The channels the user is a member of
email_domain The user's email domain
sent_message_count The total number of messages the user sent
received_message_count The total number of messages the user received
early_message_count The number of messages the user sent between 6 am and 12 pm
morning_message_count The number of messages the user sent between 12 pm and 6 pm
afternoon_message_count The number of messages the user sent between 6 pm and 12 am
night_message_count The number of messages the user sent between 12 am and 6 am

Table 4.3:Columns of the User Dataframe. Bold indicated features are computed and cannot
be found in the original JSON �les.

Channel Feature Description
name The channel name
description The channel description
created The timestamp of the channel creation
total_membership The total number of members
messages_posted The total number of messages posted
members_who_posted The number of members who posted at least one message
members_who_viewed The number of members who viewed at least one message
label Label indicating if the channel is malicious or not

Table 4.4: Columns of the Channel Dataframe. All features are taken from JSON �les.
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4.4 Synthesized Attacks

As described in Section 2.2, four attack vectors are identi�ed, that were within breaches of
team communication platforms. As these attacks did not happen on the internal Masterclass
communication platforms, we synthesize them programmatically by modifying the previously
generated dataframes for users, messages, and channels.

1. To simulate lateral neighborhood phishingattacks AV1 in team communication platforms,
a group of active users, randomly selected, sends phishing messages to their common
channels. This is accomplished by augmenting the message dataframes with new
messages.

2. To synthesize power user targetingAV2 , a batch of randomly selected users send messages
to previously unaf�liated channels. This is also achieved by extending the message
dataframe with new messages.

3. To simulate impersonation attacksAV3 , several randomly chosen users have their name,
country, and status replaced with values from different users. This is achieved by
modifying the user dataframe.

4. The last attack vector channel snif�ng AV4 is simulated by adding selected users to
multiple channels they are not members of and have not interacted with before. This is
done by extending the channel dataframe with new users.

Additionally, we create a list of exemplary phishing messages in the same style and format
as regular Slack messages that are used for the mentioned synthesized phishing attacks.
These messages are not directly associated with the Masterclass resources. Instead, they are
written generally so that they can also be used for other team communication platforms. We
use OpenAI's ChatGPT [77] to generate new messages based on previously human-written
messages to achieve many unique messages. In total, 260 unique messages are created, of
which about 50 are hand-crafted and 210 AI-generated.

4.5 Message Embeddings

To generate features from messages exchanged among users on a team communication
platform, we convert all processed messages into a �xed-size embedding representation [78].
Various methods exist for generating text embeddings for this task. As outlined by Dou et
al. [44], many research papers use pre-trained word2vec [78] or Bert [79] models. However,
with the emergence of large language models [80], it is also possible to obtain cutting-edge
embeddings through API calls to external services [81].
For our initial approach, we employ Bert-as-a-service [82] to generate a �xed vector of 512
features as our message embeddings. This method is used effectively by previous work [44] to
embed Twitter messages and identify fake news. As described in the paper, Bert-as-a-service
leverages a pre-trained BERT model to encode semantic similarities among different sent
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messages. However, upon closer examination, we discover that there are no signi�cant
differences in the cosine similarity (Eq. 4.1) between maliciously labeled messages and regular
messages.

The cosine similarity is a commonly used measure for determining the similarity between
feature vectors. Given two feature vectors, A and B, the cosine similarity is computed as
follows:

cosine similarity =
~A � ~B

k~Akk~Bk
(4.1)

Therefore, we replace Bert-as-a-service with the OpenAI embeddings API endpoint [81]. In
this case, we utilize the babbage-similarityengine to generate our embeddings. As demonstrated
by [83], the endpoint exhibits a strong performance compared to other embedding providers
in a similarity search problem. The OpenAI endpoint transforms each message into a
�xed vector consisting of 2048 features. To improve the cosine similarity between �agged
anomalous messages and reduce their similarity to regular messages, we further customize
the embeddings for our dataset.

OpenAI provides a notebook [84] that demonstrates a method to tailor embeddings to speci�c
classi�cation tasks, using training data consisting of manually labeled text pairs according to
their similarity. In our context, these text pairs are malicious-regular, malicious-malicious, or
regular-regular messages. As a result, an optimized matrix is generated using a process of
iterative optimization through gradient descent.
Initially, a random matrix is generated with dimensions matching the size of the embeddings.
Then, in each training epoch, a simple Neural Network uses this matrix to project the
embeddings of two text sets, in our case regular messages and malicious messages. The
projected embeddings are compared using cosine similarity, which serves as the predicted
similarity score. To quantify the disparity between the predicted score and the actual human-
assigned similarity score, a Mean Squared Error (MSE) loss function is employed. The
resulting loss is utilized to calculate the gradient, representing the rate of change of the loss
in the matrix. The matrix is then updated in the opposite direction of this gradient, effectively
reducing the loss. This process of prediction, loss calculation, gradient computation, and
matrix update is repeated for 30 epochs or until the matrix achieves an acceptable level of
accuracy. Consequently, the resulting matrix can be multiplied with the original embeddings
from our messages, thereby reducing error rates when classifying message pairs as similar or
dissimilar.

Figure 4.4 shows the cosine similarity between the raw and optimized embedding vectors
for messages from our dataset. As a result of the optimization process, two distinct clusters
emerge: one represents identical types of message pairs (malicious - malicious / regular -
regular), labeled as 1, and the other corresponds to different types of message pairs (malicious-
regular), labeled as -1.
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(a) Cosine similarity between message pairs without
applied optimization matrix. The similarity scores
for the two message pairs overlap, causing the clus-
ters to be indistinguishable.

(b) Cosine similarity of message embeddings after ap-
plied optimization matrix. Two distinct clusters can
be seen after the optimization process.

Figure 4.4: Cluster 1 comprises pairs of identical message types, either anomalous-anomalousor
regular-regular. In contrast, Cluster -1 encapsulates pairs of different message types,
anomalous-regular. Optimizing embeddings has a clear effect in distinguishing the
two types of message pairs.

4.6 Data Representation

As stated in Chapter 3, graph neural networks were previously utilized for anomaly detection
in social networks, surpassing heuristic-based approaches or feature-based DL approaches
that do not incorporate graph structure. In order to employ a Graph Neural Network on
our dataset, it is necessary to transform the data into a graph representation. This section
will outline different graph representations and libraries that can be utilized to represent our
data.

4.6.1 Graph Dataset Libraries

Multiple libraries exist to represent and process graph data programmatically in Python [85],
our preferred programming language. To this date, the most popular ones are:

• NetworkX [86], initially developed in 2002, is a Python package for the creation, manip-
ulation, and study of the structure, dynamics, and functions of complex networks.

• Deep Graph Library (DGL) [87], which is a framework-independent library and can be
used with Pytorch [88], MXNet [89], and Tensor�ow [90].
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• Pytorch Geometric [91], which is a geometric deep learning extension library for
Pytorch [88].

Although NetworkX is a widely used library for graph processing in Python, it is not intended
for utilization in the realm of Graph Machine Learning. PyTorch Geometric and DGL, on
the other hand, are both optimized for graph machine learning tasks. However, PyTorch
Geometric is more actively developed in the �eld of graph anomaly detection. Hence, we
opted to employ a PyTorch Geometric dataset for our graph representation.

4.6.2 Knowledge Graphs

Three types of knowledge graph implementations exist within PyTorch Geometric, which can
represent data in different graph structures [92]. The most commonly used representation is
the Homogeneous Attributed Graph . In this graph, all nodes and edges are of the same type.
There is only one shared feature space,graph.x, for all nodes, and a single graph.edge_index
matrix to represent all edges between nodes.
Then, there is the Heterogeneous Attributed Graph . Here, nodes and edges can be of
different types. The node feature space is divided, and each node type has its own matrix
representation, graph[node_type].x. Edges between different types of nodes are represented as
graph[nodetype1_relation_nodetype2].edge_index, also using separate matrices.
Finally, PyTorch Geometric also supports Temporal Dynamic Graphs [93]. This type of graph
is used to represent data that change over time.

4.6.3 Final Graph Design

During our initial experimentation stage, we attempted to represent the Slack dataset as a
homogeneous attributed graph. In this representation, users are represented as nodes, and the
edges denoted message interactions between those users. The user features are stored directly
within the nodes, while the message features are associated with the attributed edges.

However, we soon discovered that this design approach is not suitable for the task of anomaly
detection. As mentioned by Kim et al. [37] and Ma et al. [10], much current research and
frameworks for GNN-based anomaly detection do not take into account edge features. The
most recent paper to our knowledge that incorporates edge weights for anomaly prediction
on graph networks is Shah et al. [94], which was published seven years ago and does not
consider recent advances in the �eld of GNNs.

For this reason, we adopt a Heterogeneous Attributed Graph structure to represent our
Masterclass dataset. In this revised approach, users, messages, and channels are all repre-
sented as nodes, while interactions such asuser-sends-message, message-sentTo-channel, and
message-sentTo-userare represented as non-attributed edges.
Compared to temporal or dynamic graph designs, heterogeneous graphs also offer better
support for anomaly detection, as noted in the comprehensive study by Ma et al. [10]. Cur-
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rently, there is still a signi�cant amount of research to be conducted in the �eld of anomaly
detection on dynamic and temporal graphs.

To initialize the graph using PyTorch Geometric's "HeterogeneousGraph" interface, the
following steps are taken:

data = HeteroData()
data['user'].x = padding_user_x(user_x)
data['user'].y = user_y
data['message'].x = message_x
data['message'].y = message_y
data['channel'].x = padding_channel_x(channel_x)
data['channel'].y = channel_y
data['user', 'sends', 'message'].edge_index = user_sends_message
data['message', 'sentTo', 'channel'].edge_index = message_sentTo_channel

Note that a custom padding is applied to the user and channel feature vectors. This ensures
that all feature vectors of each node type have the same dimensionality.

The �nal node structure of the heterogeneous graph can be observed in Figure 4.5. Each color
represents a distinct node type. The edges between the nodes are non-attributed. Figure
4.6 illustrates how the graph representation displays all messages to the selected channel
emc_amlumniduring March 2023.
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Figure 4.5: Node structure and relations of the heterogeneous knowledge graph. Different
colors and shapes represent node types. Edges between the nodes are non-
attributed and do not carry any features or weights.

Figure 4.6: Snapshot taken of the �nal Masterclass knowledge graph, showing all conversa-
tions between users in the channel emc_amlumniwithin March 2023. Node types
are represented by different colors and shapes.
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4.7 Final Node Features

Table 4.5 showcases the �nal node feature list of our dataset. It is important to note that not all
features from the previously generated dataframes are included in the graph representation.
This includes user-speci�c data, such as emails, and other features irrelevant for predicting
anomalies.

4.8 Dataset Creation Flow

In Figure 4.7, we present the �nal work�ow for creating the Masterclass dataset. This work�ow
showcases the process of loading data from the original Slack export �les and transforming it
into a graph representation. Additionally, it outlines all intermediate processes, including
embedding creation and attack injection.

Node Type Feature

User Node

timezone
country
team
title
is_admin
is_bot
is_app_user
updated
is_email_con�rmed
number of joined channels
number messages written in 0:00-6:00
number messages written in 6:00-12:00
number messages written in 12:00-18:00
number messages written in 18:00-24:00

Message Node text embedding

Channel Node

total members
messages posted
number members that posted
number members who viewed

Table 4.5:Final node features used in the graph representation of the Masterclass dataset.
Private user data, such as emails and irrelevant features for anomaly detection are
excluded from the graph.
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Figure 4.7: Creation �ow of the Masterclass dataset. The raw data is loaded from the exported
JSON �les and transformed into a graph representation.
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CONAD [45], which is summarized in Chapter 3.3, is selected as the baseline model for our
anomaly detection task. In particular, the self-supervised learning approach of CONAD,
which incorporates human knowledge to enhance the graph, proves to be a promising method
for detecting anomalies in team communication platforms.
In this chapter, we present our extended CONAD model, ECONAD , which is speci�cally
designed to detect anomalies in team communication platforms. First, we expand the base
CONAD model by incorporating augmentation strategies tailored to team communication
platforms (Section 5.1). Subsequently, we introduce a multi-view graph approach (Section 5.2).
We then describe the sampling strategies used to divide the graph into smaller batches in
Section 5.3, as well as the validation process in Section 5.4. Finally, we outline the prediction
and system design in Section 5.5.

5.1 Custom Augmentation Strategies

Not all prede�ned CONAD augmentation strategies, as described in Section 3.3.2, are directly
applicable to team communication platforms. For example, CONAD's high degreestrategy
is based on the assumption that a node with a high number of edges is more likely to be
anomalous. However, in the context of a team communication platform, this assumption is
invalid, as it would classify every channel with many active users as anomalous. Nevertheless,
Xu et al. [45] demonstrated that incorporating prior human knowledge about attack patterns
has a signi�cant and positive impact on anomaly detection in social networks. Therefore, we
introduce our own team communication platform-speci�c augmentation strategies, which
are custom-tailored to the attack vectors identi�ed in Section 2.2. Similarly to the original
augmentation strategies implemented within the base CONAD model, the new augmentation
strategies can be categorized into structural and attribute augmentation strategies.

A1 Neighborhood Phishing (Attribute) With our �rst custom augmentation strategy, we
aim to detect lateral phishing messages sent to a compromised user's direct common
interaction channels. We replace a randomly selected message node embedding vector
with a malicious message embedding from the training set used to �ne-tune the message
embeddings in Section 4.5. By doing so, we hope the model will learn to differentiate
between normal and malicious messages based on the message's embedding vector.
Since the original graph structure remains unchanged, the model can only incorporate
knowledge through attributes.
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A2 Poweruser Phishing (Attribute, Structural) Attackers have previously gained access to
more security-critical resources by contacting power users within a team communication
platform, such as IT administration [7]. Since the model cannot determine which user
is responsible for what service in an organization, we attempt to detect this attack by
introducing new malicious message events between a user and channels not in the
user's direct neighborhood. Similarly to A1, we use malicious embeddings for the new
message node. With the introduction of this augmentation, the model can incorporate
knowledge through both attributes and structure.

A3 User Impersonation (Attribute) By impersonating a user, attackers can increase their
credibility and raise less suspicion when requesting access to critical infrastructure. To
detect this type of attack, we replace the features of randomly chosen user nodes with
the features of another random user in the same workspace. Like augmentation strategy
A1, the model can only incorporate knowledge through attributes.

A4 Channel Snif�ng (Structural) Team communication platforms often contain sensitive
information in public channels. If a user joins a large number of channels that are not
related to their team, it may indicate that the user is looking for sensitive information
unrelated to their actual work. To detect this behavior, we introduce new edges between
users and several randomly chosen channels that the user was not previously af�liated.
In this augmentation strategy, the model has to learn from the graph structure, as all
node attributes remain unchanged.

5.2 Multi-View Graph

CONAD is designed to process homogeneous attributed graphs in which every node is of
the same type and is assigned a feature vector with the same dimensionality. However, as
described in Section 4.6.3, the graph obtained from our Masterclass dataset is heterogeneous,
comprising three different node types: user nodes, message nodes, and channel nodes. To
process this heterogeneous graph, we split it into multiple views based on the type of anomaly
we aim to detect. Unlike the multi-view approach by Peng et al. [47] introduced in Section
3.2, we chose not to employ a speci�c GNN for each anomaly classi�cation task, but to
use CONAD with the extended augmentation methods introduced in the previous section.
Similarly to Zhang et al. [46], we divide the graph into different views using prede�ned
meta-paths denoted by P .

A meta-path P is a path de�ned on the network schema TG = ( A , R ), and is denoted in the

form of A1
R1�! A2

R2�! ...
RL�! AL+ 1, which de�nes a composite relation R = R1 � R2 � ... � RL

between node types A1 and AL+ 1, where � denotes relation composition operator, and L is the
length of P [46]. Given our heterogeneous network with different node types user, message,
and channeland their relations, we de�ne the following meta-paths to split the graph into
two new views:
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P1 Message-User-Channel-User-Message (P1): By removing all users and channels from
the graph, we can detect anomalies based on the message's content and its relation
to other messages. Since this graph view is homogeneous, we can apply CONAD's
original augmentation strategies.

P2 User-Message-Channel: For augmentation A3 and A4, we only use the channel and
user nodes. By excluding messages, we can detect anomalies based on the user's
behavior and its relation to other users and channels.

An example of how the graph is transformed by applying the meta-paths P1 and P2 can be
seen in Figure 5.1.
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Exemplary heterogeneous graph structure before the application of a meta-path P . Node types are
indicated by different colors and shapes.

P1 Message-User-Channel-User-Message view. After all users and channels
are removed, messages of each channel connect to each other and form a
complete cluster. Clusters are connected to other clusters when users are active
in both channels. This view is applied for message augmentation strategies A1
and A2.

P2 User-Message-Channel view. By removing all messages, only direct user-
channel interactions are perceived. This view is employed for the custom
augmentation methods A3 and A4.

Figure 5.1: Graph transformation with meta-paths P1 and P2. After applying the meta-paths,
the graph is split into two views, that can be used for different augmentation
strategies.
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5.3 Sampling Strategies

Our graph data set, derived from the Masterclass team communication platform, comprises
202 user nodes, 39 channel nodes, and 4132 message nodes collected over a 3-year period,
as previously described in Section 4.1.3. To predict anomalies, we partition the graph into
smaller batches, simulating various time periods such as days, weeks, or months that can be
used to train the model.
Several approaches exist for dividing a graph into smaller subsets [95]. For our team
communication platform graph, we employ multihop neighborhood sampling [59]. This
method involves selecting a random source node vi , and for each hop (representing the
number of edges required to reach a neighboring node vj), adding all nodes within that hop
to the sample. Figure 5.2 illustrates a source nodevi and its 3-hop neighbors, which would
be included in a batch. In our sampling strategy, we set the number of hops to 4 to ensure the
inclusion of all three node types: messages, users, and channels.
In practice, multiple source nodes are chosen to create a single sample, ensuring that the
source nodes represent different types. The number of source nodes is determined by the
batch sizeparameter. In Chapter 6, we evaluate how the batch size parameter in�uences our
�nal prediction.

Figure 5.2: Multihop neighborhood sampling. The red node vi is taken as source node. Nodes
of different colors represent the sampled nodes at k-hops. Here vj is one of the
3-hop neighbors of vi . The orange arrows mark the shortest path ranging from vi

to vj . Graphic and description taken from Xu et al. [96]

39



5 ECONAD

5.4 Validation

In the original implementation of the CONAD �t function, the model is trained for a �xed
number of epochs without considering the performance on a separate validation set. To
improve the training process and avoid over�tting, we add validation and an early stopping
logic to the original implementation.

1. Data loader for the validation set:
The model's training function is extended to process not only a training graph G but
also an optional validation graph val_G.
If a validation graph is provided, separate batches are created by using neighborhood
sampling. The average loss from all batches is used to evaluate the model's performance
after each training epoch.

2. Validation loss computation:
After each training epoch, the model is evaluated on the validation graph using the
val_loader. The loss on the validation graph is computed using the same loss function
as used for training, and averaged across all batches of the validation graph.

3. Early stopping based on validation performance:
To prevent over�tting and improve the training process, an early stopping mechanism
is implemented, based on the model performance on the validation graph. Using
the patienceparameter, the number of consecutive epochs with no improvement in
validation loss can be set before training is stopped by the early stopping mechanism.
By default, we set patienceto 50 epochs.
During the training, the best-obtained validation loss and the number of epochs with
no improvement are tracked. If the number of consecutive epochs with no improvement
in the validation loss exceeds the value of patience, training is stopped early.

4. Saving the best model state:
As training progresses, the model state with the best validation loss is saved. After the
training is completed, either by reaching the maximum number of epochs or triggered
by early stopping, the state of the model with the best performance on the validation
graph is returned.

By incorporating these changes into the base CONAD training algorithm, the modi�ed �t
function now provides a more robust training procedure. The early stopping mechanism
allows the model training to be more computationally ef�cient, as it will terminate the training
early if it does not observe any improvement in the validation loss for a speci�ed number of
epochs. Furthermore, this approach also mitigates the risk of over�tting by closely monitoring
the validation performance throughout the training process.
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5.5 Prediction

To predict anomalies in the original graph, we initially divide the graph into multiple views,
as described in Section 5.2. Then, each view undergoes processing by a distinct trained
ECONAD model, which uses custom augmentation strategies tailored speci�cally to that
view. To generate the �nal prediction for the original graph, we project the predictions of each
view onto the original graph, as illustrated in Figure 5.3. If a node is labeled as malicious in
the P1 message view, it will also be labeled in the original graph.

To visually represent the identi�ed anomalous nodes, we color the nodes in the provided
graph according to their predicted label. Anomalously labeled nodes are colored yellow,
while normal nodes are colored purple. Channel nodes are colored green, as the dataset
does not include any malicious channels. Hovering over nodes reveals additional detailed
information. Node types can be distinguished by shape: user nodes are displayed as triangles,
message nodes as circles, and channel nodes as squares.
Figure 5.4 showcases exemplary predictions for different types of anomalies on the original
graph. The �nal design of the ECONAD model can be observed in Figure 5.5.

P1 Message View

P2 User Channel View

Original Graph

Figure 5.3: Node predictions for each view are projected onto the original graph to obtain the
�nal prediction. If a message node is predicted as anomalous in the P1 message
view, it will be colored yellow in the �nal prediction on the original graph.
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